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The hypercharge-isospin-color symmetry of the standard model interaction is drastically
reduced to a remaining Abelian electromagneticU(1)-symmetry for the particles. It is
shown that such a symmetry reduction is a consequence of the central correlation in the
internal group as represented by the standard fields where the hypercharge properties
are given by the central isospin-color properties. A maximal diagonalizable symmetry
subgroup (Cartan torus) of the interaction group for the particles as eigenvectors has
to discard either color (confinement) or isospin. An additional diagonalization for the
external spin properties which come centrally correlated with the isospin properties
enforces the weak isospin breakdown.

1. INTRODUCTION

The interactions in the standard model (Weinberg, 1967) of elementary parti-
cles are invariant under the external transformations with the semidirect Poincar´e
groupIR4

←×SO0(1, 3) (with respect to half-integer spins written withSL(C| 2) as
the twofold covering group of the Lorentz groupSO0(1, 3)) and under the internal
operation group defining hypercharge, isospin, and color properties

interaction symmetry: IR4←×SL(C| 2)︸ ︷︷ ︸
external

×U(1)× SU(2)× SU(3)︸ ︷︷ ︸
internal

The standard interactions are implemented by the 12 internal gauge fields which
come as 4-vectors with respect to the external Lorentz group. I shall show later
that slight but important changes should be made in this group with respect to the
faithfulness of its representation.

There is a dramatic breakdown2 from the real (10+ 12)-parametric Lie
symmetries (Bourbaki, 1989; Fulton and Harris, 1991; Helgason, 1978) for the
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2 A blowup of symmetries as a consequence of a linearization (tangent space expansion) is proposed
in Saller (1998).

1151
0020-7748/01/0600-1151$19.50/0C© 2001 Plenum Publishing Corporation



P1: VENDOR/FOM/GAY/FJQ P2: GCR

International Journal of Theoretical Physics [ijtp] PP108-299771 March 26, 2001 12:45 Style file version Nov. 19th, 1999

1152 Saller

interaction to the symmetries for the particles

massive particle symmetry:IR× SU(2)︸ ︷︷ ︸
external

× U(1)︸︷︷︸
internal

massless particle symmetry:IR× U(1)︸ ︷︷ ︸
external

× U(1)︸︷︷︸
internal

where Wigner’s definition (Wigner, 1939) for free particles as unitary irreducible
representations of the Poincar´e group is used. In this strict sense, confined quarks
cannot be classified as particles because they do not have a mass as eigenvalue
for the space–time translations. The Poincar´e group representations are induced
(Mackey, 1968) by representations of direct product subgroups which have a ro-
tation factor—eitherSU(2) with spin numbersJ = 0, 1

2, 1, . . . or axial rotation
(polarization)U(1) with numbersM = 0,±1,±2, . . . for massive and massless
particles, respectively—and a time translation factorIR represented in a rest system
with massm as eigenvalue for massive particlesm2 = q2 > 0 and in a polariza-
tion system with the absolute value of the momentum|Eq| = q0 as eigenvalue for
massless particlesm2 = q2 = 0, |Eq| > 0.

The word symmetry—in connection with multiplicity—is used in its strict
sense, for example, as particles, a proton and a neutron may be called an isospin
induced or isospin related doublet, but not an isospin symmetric doublet—with
their different masses there is noSU(2)-symmetry connecting those two particle
states. Or, more obviously, the four particles comprising the weak bosons{Z0, W±}
and the photonγ are not isospin symmetric triplet-singlet, there is no symmetry
transformation left between them.

The internal symmetry reduction from interaction parametrizing fields to
asymptotic free particles has two aspects: Nontrivial colorSU(3)-representations
are confined, and no nontrivial color induced multiplets are seen in the particle
regime. Nontrivial isospin induced muliplicities remain visible in the case of the
hypercharge–isospin breakdown which is asymptotically reduced to an electro-
magnetic AbelianU(1)-symmetry.

As familiar from the energy eigenstates of quantum mechanics, particles
are constructed as eigenvectors with respect to a maximally diagonalizable sub-
group, including the time translations, with the corresponding weights collecting
the eigenvalues for the operations involved, for example, eigenstates for electro-
magneticU(1)-operations are characterized by integer charge numbersz, spin
SU(2)-eigenstates with respect to anSO(2) ∼= U(1)-subgroup (third spin direc-
tion) by eigenvalues|J3| ≤ J for a spin (2J + 1)-plet etc. The weights of massive
particles are given by (m, J3, z) ∈ IR× ZZ× ZZ with the components for mass,
third spin direction, and integer charge-like number (particle–antiparticle) and the
weights of massless particles are given by (|Eq|, M, z) ∈ IR× ZZ× ZZ with the
components for momentum absolute value, polarization, and charge. Therefore,
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the transition from the large interaction symmetry group to the small particle sym-
metry group has to discuss the problem of maximal diagonalizable subgroups of
the interaction group.

2. CENTRAL CORRELATIONS

An important feature of the operation groups where eigenvectors are looked
for is their central correlation structure; this will be explained and exemplified
using the old example of the quantum mechanical Kepler potential (hydrogen
atom (Fock, 1935)) and the internal standard-model-interaction (Hucks, 1991;
O’Raifeartaigh, 1986; Saller, 1992, 1993, 1994, 1998) symmetry.

A direct product of two groupsG1× G2 becomes centrally correlated by
considering the quotient group defined by the classes with respect to a nontrivial
subgroupC in the centers of both factors

G1× G2

C
, {1} 6= C ⊆ centrG1 ∩ centrG2

The following Lie groups will be considered

n = 1, 2,. . . : centrU(n) ∼= U(1)⊃ II(n) ∼= centrSU(n) = centrSL(C| n)

The center ofSU(n) can be written additively as ZZ modn or, multiplicatively, as
the cyclotomic group II(n)

ZZ modn = {0, 1,. . . , n− 1} ∼= II(n) = {e2π ik
n | k = 0, . . . , n− 1

}
GroupsSU(n) andSU(m) with n andm relatively prime (no common non-

trivial divisor), for example, isospinSU(2) and colorSU(3), cannot be centrally
correlated.

A covering group as Lie algebra exponent gives rise to locally isomorphic
groups (i.e., with isomorphic Lie algebras), with respect to discrete center sub-
groups with the familiar examples:

IR/ZZ ∼= U(1)∼= U(1)/II(n)

k divisor ofn: SU(n)/II(k), e.g.


SU(2)/II(2) ∼= SO(3)

SL(C| 2)/II(2) ∼= SO0(1, 3)

SU(3)/II(3)

SU(4)/II(2), SU(4)/II(4), . . .

Obviously, the irreducible representations and the weights of a centrum clas-
sified group are subsets of those for the unfactorized group.
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2.1. The Eigenstate Squares of the Hydrogen Atom

The perihelion conservation in the orbits as solutions of the Kepler
Hamiltonian

H = p−2

2
− 1

|Ex|
is described by the Lenz-Runge vectorF which defines a 3-parametric invariance
in addition to the position rotationSO(3) invariance with the angular momentaL,
as elements of the rotation Lie algebra3 log SO(3)

EL = Ex × Ep, EF = Ep× EL− Ex
r

[ EL, H ] = 0, [ EF , H ] = 0

As shown by Fock, these invariances indicate—not repeating all the subleties found
in the literature—an interaction symmetry for the bound states with energyE < 0
with the real six-dimensional Lie algebra with basis{ EL± = 1

2( EL± EF√−2H
)}

log[SU(2)× SU(2)] ∼= IR6

Therewith the bound states are acted upon with representations of the direct product
two factor groupSU(2) × SU(2) involved whose irreducible representations are
characterized by two-integer or half-integer “spin” numbers

irrep [SU(2)× SU(2)] = irrep SU(2)× irrep SU(2)

irrep SU(2) ∼=
{

[ J] | J = 0,
1

2
, 1, . . .

}

weights SU(2) =
{

M | M = 0,±1

2
,±1, . . .

}
However, the experimentally observed energy-degenerated multiplets are all

squares, that is, characterized by two equal “spin” numbers for both factors

[ J; J] = [0; 0],
[

1
2; 1

2

]
, [1; 1], . . .

with multiplicities (2J + 1)2 = 1, 4, 9,. . .

weights[ J; J] = {(M1, M2) | |M1,2| ≤ J}
2J + 1 is the principal quantum number with the energyE = − 1

2(2J+1)2 . For the
nonrelativistic hydrogen theory, the internal two spin directions for the electron

3 Log G denotes the Lie algebra for the Lie groupG.
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leading to the observed multiplicities 2(2J + 1)2 = 2, 8, 18,. . . have to be taken
into account by hand.

The correlation between the two “spin” numbers [J1; J2] in Kepler dynamics
is a consequence of the orthogonality of angular momentum and perihelion vector

EL EF = 0

This orthogonality induces a central correlation: The group maximally faithfully
represented on the bound states is notSU(2)× SU(2), but a quotient group which
correlates the centers of both factors

centrSU(2)= {±12} ∼= II(2)

The equivalence group is the “synchronizing” cycle II(2) in the bicycle II(2)× II(2)
(Klein group)

centr [SU(2)× SU(2)] = {(±12,±12)} ⊃ {(12, 12), (−12,−12)} ∼= II(2)

The irreducible representations of the group with the equivalence classes

SU(2)× SU(2)

I (2)
∼= SO(4), centrSO(4)= {±14} ∼= II(2)

are characterized by an integer sum of both “spin” numbersJ1+ J2 ∈ IN. They
come in two types

J1 = J2 = J: [ J; J] with J = 0,
1

2
, 1, . . .

J1 6= J2: [ J1; j2] ⊕ [ J2; J1] with J1, J2 = 0, 1, 2,. . .

with the eigenvalues (weights) in the first case either both integer or both half-
integer and, in the second case, both integer

weights SO(4)J1=J2 = {(M1, M2) | 2M1,2 ∈ ZZ, M1+ M2 ∈ ZZ}
weights SO(4)J1 6=J2 = weights SO(3)× weights SO(3)

weights SO(3) = {M | M ∈ ZZ}
with the defining representations, faithful and not faithful forSO(4)

J1 = J2:

[
1

2
,

1

2

]
:

SU(2)× SU(2)

I (2)
→ SO(4)

(−12, 12) 7→ −14

J1 6= J2: [1; 0] ∼= [0; 1]:
SU(2)× SU(2)

I (2)
→ SO(3)∼= SU(2)/II(2)

(−12, 12) 7→ +13
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This orthogonality enforces evenJ1 = J2, that is, it allows only the complex
irreducible representations where the weights occupy squares.

2.2. The Hypercharge Correlation with Isospin–Color

The fields of the standard model transform under isospinSU(2) with the
irreducible representations

irrep SU(2)= {[2T ] | T = 0, 1
2, 1, . . .

}
multiplicities: 2T + 1

as well as under colorSU(3) with the irreducible representations characterized by
two integers

irrep SU(3)= {[2C1, 2C2] | C1,2= 0, 1
2, 1, . . .

}
multiplicities: (2C1+ 1)(2C2+ 1)(C1+ C2+ 1)

From now on, I use integers, odd and even, for the weights and representa-
tions replacing the half-integers and integers that were used for familiarity in the
Kepler dynamics. The integers are the winding numbersz ∈ ZZ characterizing the
representations ofU(1)-subgroups.

The left-handed quark and antiquark isodoublet color triplet fields are exam-
ples of the complex six-dimensional defining dual representations of isospin–color

irrep SU(2)× irrep SU(3) = {[2T ; 2C1, 2C2]}
defining representations:u = [1; 1, 0], ǔ = [1; 0, 1]

The totally antisymmetric tensor-powers of the defining representations generate—
up to isomorphism—all fundamental representations for isospin and color by the
products

n∧
u⊗

m∧
ǔ, n, m ∈ IN ⇒


for SU(2) :

3∧
u ∼= [1] ∼=

3∧
ǔ, doublet

for SU(3) :


2∧

u ∼= [0, 1], antitriplet
2∧

ǔ ∼= [1, 0], triplet

Therewith the hypercharge numbery of the interaction fields in the standard
model is a consequence of their isospin–color powers

6y = n−m
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as shown in the following table:

U(1) SU(2) SU(3)
Field Symbol (n, m) y = n−m

6 [2T ] [2C1, 2C2]

Left lepton 1 (0,3) − 1
2 [1] [0, 0]

Right lepton e (0, 6) −1 [0] [0, 0]

Left quark q (1, 0) 1
6 [1] [1, 0]

Right up quark u (4, 0) 2
3 [0] [1, 0]

Right down quark d (0, 2) − 1
3 [0] [1, 0]

Higgs Φ (3, 0) 1
2 [1] [0, 0]

Hypercharge gauge A (0, 0) 0 [0] [0, 0]

Isospin gauge B (1, 1) 0 [2] [0, 0]

Color gauge G (1, 1) 0 [0] [1, 1]

The hypercharge is related to the two-ality of theSU(2)-representations and
the triality (Baird and Biedenharn, 1964) of theSU(3)-representations by the mod-
ulo relations

isospin duality: 2T mod 2= 6y mod 2

color triality: 2(C1− C2) mod 3= 6y mod 3

The centrality (n-ality) k mod n of an SU(n)-representations describes the
centrum representation involved

II(n) 3 e
2π i
n 7→ e

2π ik
n ∈ II(n)

for example, faithful forSU(2)-representations with duality 2T mod 2= 1 and for
SU(3)-representations with triality 2(C1− C2) mod 3= ±1.

This central correlation shows that the group maximally faithfully represented
by the fields in the standard model is given by the following classes of the direct
product group

U(1)× SU(2)× SU(3)

I (6)
= U(2)× SU(3)

I (3)
= SU(2)× U(3)

I (2)
= U(2× 3)

The representation of the subgroup “synchronizing” both centrums II(2)× II(3) =
II(6) ⊂ U(1)∩ [SU(2)× SU(3)]

II(6) × II(6) =
{(

e
2π ik1

6 , e
2π ik2

6

)
| k1,2= 0, . . . , 5

}
⊃
{(

e
2π ik

6 , e
2π ik

6

)
| k = 0, . . . , 5

} ∼= II(6)

determines the hypercharge numbers as integer multiples of1
6.
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The eigenvalue spectrum for the representations of the centrally correlated
internal group is

weights U(2× 3)=
{

[y‖2t ; 2c1, 2c2] | 2t, 2c1,2 ∈ ZZ,

with y ∈ t − c1− c2

3
+ ZZ

}

3. CARTAN TORI

A Lie algebra has Cartan subalgebras, for semisimple Lie algebras given by
maximal Abelian subalgebras, diagonalizable in a representation. Going from a
Lie algebra to its exponent, a Lie group, a Cartan subalgebra gives rise to a Cartan
subgroup. A maximal Abelian direct product subgroup of a compact group

U(1)n = U(1)× · · · × U(1)︸ ︷︷ ︸
n times

will be called ann-dimensional Cartan toruswhich may be parametrized for each
direct factor (“circle”) by

U(1)= {eiα | α ∈ [0, 2π ]}
If the dimension of a Cartan torus coincides with the rank of the Lie algebra,

the Cartan torus is calledcompletefor the group. In general a complete Cartan
torus requires a special (orthogonal) basis. There are situations where a Cartan
subalgebra does exist, but complete Cartan torus do not.

3.1. A Complete Cartan Torus for SU(n)

The Lie algebra logSU(n) ∼= IRn2−1, n ≥ 2, in the defining complex
n-dimensional representation has a basis consisting of traceless and hermitian
generalized Pauli matrices

{σ (n)a}n2−1
a=1 , tr σ (n)a = 0, σ (n)a = (σ (n)a)?

constructed inductively from the proper Pauli matricesσ (2)= σ . The start for
n ≥ 3 is the embedded Lie subalgebra ofSU(n− 1) with

σ (n+ 1)a =
(
σ (n)a 0

0 0

)
, a = 1, . . . , n2− 1

The new off-diagonal matrices fora = n2, . . . , (n+ 1)2− 2 come in (n− 1) pairs
with unit column vectorse and their transposedeT as illustrated in the first step



P1: VENDOR/FOM/GAY/FJQ P2: GCR

International Journal of Theoretical Physics [ijtp] PP108-299771 March 26, 2001 12:45 Style file version Nov. 19th, 1999

Symmetry Reduction From Interactions to Particles 1159

for the eight Gell–Mann matricesσ (3)= λ

σ (n+ 1)a =
(

0n e
eT 0

)
, σ (n+ 1)a+1 =

(
0n −ie
ieT 0

)

σ (3)4 =
0 0 1

0 0 0
1 0 0

 , σ (3)5 =
0 0 −i

0 0 0
i 0 0


σ (3)6 =

0 0 0
0 0 1
0 1 0

 , σ (3)7 =
0 0 0

0 0 −i
0 i 0


The new diagonal matrix is defined by

σ (n)n2−1 = 1√(n
2

) (1n−1 0
0 −(n− 1)

)
Therewith the normalization is as for the proper Pauli matrices

tr σ (n)aσ (n)b = 2δab

A Cartan subalgebra logU(1)n−1 is spanned by the diagonal matrices

Cartan subalgebra basis:
{
iσ (n)m2−1 | m= 2, 3,. . . , n

}
whose exponent gives a complete Cartan torus of dimensionn− 1 (rank of log
SU(n)).

The characteristic diagonal element with a nontrivial determinant generates
the centrum ofSU(n) and is renormalized to display integerU(1)-winding numbers
in the diagonal

wn =
√(

n

2

)
σ (n)n2−1 =

(
1n−1 0

0 −(n− 1)

)
, detwn = −(n− 1)

U(1)n2−1 = {eiαwn | α ∈ [0, 2π ]}
e

2π i
n wn = e

2π i
n 1n ∈ U(1n) ∩ U(1)n2−1 = U(1n) ∩ SU(n) ∼= II(n)

HereU(1n) = U(1)1n denotes the scalar phase group.

3.2. A Complete Cartan Torus for Hyperisospin

Hypercharge and isospin symmetry with central correlation, called hyper-
isospin

U(1)× SU(2)

I (2)
∼= U(2)
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has a Cartan subalgebra in the defining complex two-dimensional representation{
iα012+ iα3σ

3 | α0,3 ∈ [0, 2π ]
} ∼= IR2

Its exponent has the scalar hypercharge and the third isospin component phase
group as factors which, however, are no direct factors for a torus

eiα012+iα3σ
3 ∈ U(12) ◦ U(1)3

The parametrization has inherited the following ambiguity from the common cen-
trum U(12) ∩ SU(2)∼= II(2)

(α0, α3) = (π, 0)∼= (0,π ), eiπ12 = eiπσ 3 = −12 ∈ II(2) ∼= U(12) ∩ SU(2)

A Cartan torus ofU(2) arises with a projector basis containing two orthogonal
elements

eiα+
12+σ3

2 eiα−
12−σ3

2 ∈ U(1)+ × U(1)−, α± = α0± α3

P±(2)= 12± σ 3

2
, P+(2)P−(2)= 0

For the general case,

U(1)× SU(n)

I (n)
∼= U(n), U(1n) ∩ SU(n) ∼= II(n)

the exponent of a Cartan subalgebra in the defining complexn-dimensional rep-
resentation{

iα01n + i
n∑

m=2

αm2−1σ (n)m2−1
∣∣α0,m ∈ [0, 2π ]

}
∼= IRn

gives an Abelian group where the scalar phase factor is correlated with the centrum
generating factor

U(1n) ◦ U(1)n2−1× U(1)n−2, eiαwn ∈ U(1)n2−1

e.g., forU(3): U(13) ◦ U(1)8× U(1)3, eiαw3 ∈ U(1)8, w3 =
√

3λ8

A Cartan torus comes with the appropriate projectorsP±(n) and parametersα±
U(1)+ × U(1)− × U(1)n−2, eiα+P+(n)eiα−P+(n) ∈ U(1)+ × U(1)−

with


P+(n) = (n− 1)1n + wn

n
, α+ = α0+ αn2−1√(n

2

)
P−(n) = 1n − wn

n
, α− = α0− (n− 1)

αn2−1√(n
2

)
P+(n)P−(n) = 0, (wn)2 = (n− 1)1n − (n− 2)wn

For the groupsU(n) with rankn Lie algebras there exist complete Cartan tori.
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3.3. A Complete Cartan Torus for the Hydrogen Atom

For the nonrelativistic hydrogen bound states, an exponentiated Cartan subal-
gebra of log[SU(2)× SU(2)] with basis{i Eσ ⊗ 12, 12⊗ i Eτ } in the defining quartet
representation

Cartan algebra
{
iα3σ

3⊗ 12+ 12⊗ iβ3τ
3
} ∼= IR2

eiα3σ
3 ⊗ eiβ3τ

3 =


ei (α3+β3) 0 0 0

0 ei (α3−β3) 0 0

0 0 e−i (α3−β3) 0

0 0 0 e−i (α3+β3)

 ∈ U(1)3 ◦ U(1)3

parameters:{α3+ β3, α3− β3}
leads to a complete Cartan torus via a basis of orthogonal generatorsL± for
coordinatesγ±

eiα3σ
3 ⊗ eiβ3τ

3 = ei γ+L3
+ei γ−L3

− ∈ U(1)+ × U(1)−

L3
± =

σ 3⊗ 12± 12⊗ τ 3

2
, L3

+L3
− = 0, γ± = α3± β3

L3
+ = L3 is the third component of the angular momenta logSO(3),L3

− ∼ F3 is
proportional to the third component of the perihelion vector.

In the case of two special groups, centrally correlatable for dimensions with
a common nontrivial factor

SU(n)× SU(m)

I (k)
, II(k) ⊂ II(n) ∩ II(m), n, m, k ≥ 2

the exponent of a Cartan Lie subalgebra is centrally correlated by theU(1)’s
generated bywn andwm:

U(1)n2−1 ◦ U(1)m2−1× U(1)n+m−4

U(1)n2−1 ◦ U(1)m2−1-Lie algebra:{iαwn ⊗ 1m + 1n ⊗ iβwm} ∼= IR2

eiαwn ⊗ eiβwm ∈ U(1)n2−1 ◦ U(1)m2−1

In general, there arise four parameters

eiαwn ⊗ eiβwm ∼=


ei [α+β] 0 0 0

0 ei [α−(m−1)β] 0 0

0 0 e−i [(n−1)α−β] 0

0 0 0 e−i [(n−1)α+(m−1)β]


parameters:{α + β, α − (m− 1)β, (n− 1)α − β, (n− 1)α − (m− 1)β}



P1: VENDOR/FOM/GAY/FJQ P2: GCR

International Journal of Theoretical Physics [ijtp] PP108-299771 March 26, 2001 12:45 Style file version Nov. 19th, 1999

1162 Saller

which, only for the hydrogen symmetry withn = m= 2, allows an orthogonal
Cartan subalgebra basis leading to a complete Cartan torus.

3.4. No Complete Cartan Torus for Hypercharge–Isospin–Color

The internal interaction symmetryU(2× 3)= U(1)×SU(2)×SU(3)
I (2)× I (3) has a defin-

ing complex six-dimensional representation for its Lie algebra with rank 4

log[U(1)× SU(2)× SU(3)] = {iα012⊗ 13+ i EαEτ ⊗ 13+ 12⊗ i EβEλ} ∼= IR12

Cartan subalgebra:{iα012⊗ 13+ iα3τ
3⊗ 13+ 12⊗ i (β3λ

3+ β8λ
8)} ∼= IR4

using three Pauli matricesEτ (isospin) and eight Gell-Mann matricesEλ (color).
The exponentiated Lie algebra has three correlated factors generated with

w2 = σ 3 andw3 =
√

3λ8

U(16) ◦ U(1)3 ◦ U(1)8× U(1)

eiα012⊗13+iα3τ
3⊗13+12⊗iβ8λ

8 ∈ U(16) ◦ U(1)3 ◦ U(1)8

The relevant parameter combinations in the four phases that arise

parameters :

{
(α0± α3)+ β8√

3
, (α0± α3)− 2β8√

3

}
cannot be disentangled with an orthogonal basis for a representation of the direct
productU(1)× U(1)× U(1).

There exists a complete Cartan torusU(1)+ × U(1)− for hyperisospinU(2),
parametrized with{α0± α3}, and a complete Cartan torusU(1)+ × U(1)− × U(1)3
for hypercolorU(3), parametrized with{α0+ β8√

3
, α0− 2β8√

3
, β3}. However, a com-

plete Cartan torusU(1)4 for faithful representations of the internalU(2× 3)-
interaction symmetry does not exist.

4. EIGENVECTOR BASES FOR CORRELATED GROUPS

A semisimple Lie algebra, and also logU(n), allows—for any finite-
dimensional representation vector space—a basis of eigenvectors for a Cartan
subalgebra. A Lie algebra representation also involving nontrivial nilpotent trans-
formations need not have an eigenvector basis ( ; Boerner, 1955).

Eigenvectors of a Cartan subalgebra need not remain eigenvectors for the
exponentiated Cartan algebra. However, eigenvectors of a direct product of Abelian
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groups—of a Cartan torus in the compact case—are needed in the definition of
particles (eigenstates).

In the following, “eigenvectors of a Lie algebra” and “eigenvectors of a
Lie group” are the acronyms for “eigenvectors of a Cartan subalgebra” and
“eigenvectors of a maximal direct product Abelian subgroup,” in the case of a
compact Lie group of a maximal Cartan torus. With the choice of an eigenvector
basis (or of a Cartan subalgebra or of a Cartan torus) the original full symmetry
seems to be broken. However, the full symmetry remains in the set with all possible
eigenbases, for example, for spinSU(2) with a complete Cartan torusU(1)3: The
third direction choice to measure spin eigenvalues can be replaced equivalently by
any direction.

Since a correlation of two Lie groupsG1× G2 via a discrete centrumC does
not change the Lie algebra

log
G1× G2

C
= log[G1× G2] = logG1⊕ logG2

a case can arise where there exists an eigenvector basis for the Lie algebra repre-
sentation space but not for the correlated group. This is the case for compact groups
without a complete Cartan torus, especially for the internal interaction symmetry
group.

4.1. An Eigenvector Basis for U(n)

If a represented compact group has a complete Cartan torus there exists an
eigenvector basis of the representation vector space—exemplified forU(n) and
obviously true also forSU(n).

The diagonals of the logU(n)-Cartan subalgebra basis in the defining repre-
sentation {

i 1n, iσ (n)m2−1 | m= 2, 3,. . . , n
}

taken as columns in the following (n× n)-scheme (between‖ · · · ‖) display—
up to i —the eigenvalues as components of the weights (in the lines) with the
eigenvectors

e1 =


1
0
...
0

 , . . . , en =


0
...
0
1
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e1: 1 1
1√
3

1√
6
· · · 1√(n

2

)
e2: 1 −1

1√
3

1√
6
· · · 1√(n

2

)
e3: 1 0 − 2√

3

1√
6
· · · 1√(n

2

)
e4: 1 0 0 − 3√

6
· · · 1√(n

2

)
...

...
...

en: 1 0 0 0 · · · −n− 1√(n
2

)
For example, for logU(1) in the left upper (1× 1)-matrix, for logU(2) in the
left upper (2× 2)-matrix, etc. A geometrical aside, not really surprising with the
permutation group as symmetry group for the fundamentalSU(n)-weights: Erasing
the first column with the 1′s for logU(1), the remainingn lines (SU(n)-weights
with n− 1 components between| . . . ‖) give the corners of a regular fundamental
simplex (distance, triangle, tetraeder, etc.) centered at the origin ofIRn−1.

The Lie algebra for the correlated groupU(1n) ◦ U(1)n2−1 has 2-component
weights,

for basis{i 1n, i wn}:

e1: 1 1
e2: 1 1
...

...
...

en−1: 1 1
en: 1 −(n− 1)

for projector basis{iP ± (n)}:

e1: 1 0
e2: 1 0
...

...
...

en−1: 1 0
en: 0 1

Obviously, the eigenvectors keep their property for the complete Cartan torus
U(1)+ × U(1)− × U(1)n−2; for example, an eigenvector basis for hyperisospin
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U(2) is given by{e1, e2} with

eiα+ 12+σ3

2 eiα− 12−σ3

2 e1 = eiα+ 12+σ3

2 e1

eiα+ 12+σ3

2 eiα− 12−σ3

2 e2 = eiα− 12−σ3

2 e2

4.2. An Eigenvector Basis for the Hydrogen Atom

In the defining quartet [12; 1
2] representation of theSO(4)-invariant bound state

dynamics of the hydrogen atom, the eigenvectors of the Lie algebra as basis of the
representation space C| 2⊗ C| 2

e1⊗ e1 =
(

1

0

)
⊗
(

1

0

)
, e1⊗ e2 =

(
1

0

)
⊗
(

0

1

)
, e2⊗ e1, e2⊗ e2

have the eigenvalues, given in the following table:

σ 3 ⊗ 12 12 ⊗ τ 3 L3+ L3−

e1 ⊗ e1 +1 +1 +1 0

e1 ⊗ e2 +1 −1 0 1

e2 ⊗ e1 −1 +1 0 −1

e2 ⊗ e2 −1 −1 −1 0

L3± = σ 3⊗12±12⊗τ3

2

They remain eigenvectors of the correlated groupSO(4) where they have to be
characterized by the orthogonal basisL3

+L3
− = 0. The third angular momentum

L3
+ = L3 component generates an axial rotation groupei γ+L3

+ ∈ SO(2)⊂ SO(3).
The quartet comes as aSO(3)-triplet (e1⊗ e1, e1⊗e2+e2⊗e1√

2
, e2⊗ e2) with L = 1

and as a singlete
1⊗e2−e2⊗e1√

2
with L = 0. The second basis elementL3

− = F3√−2H
,

also generates an Abelian subgroupSO(2), which, however, is not a subgroup of
anotherSO(3). Its eigenvalue is related to the number of radial knotsN in the
Schrödinger wave functions 2J + 1= L + 1+ N (not directlyN = L3

−!).

4.3. No Eigenvector Basis for Hypercharge–Isospin–Color

The defining representation of the Lie algebra log[U(1)× SU(2)× SU(3)]
on a complex six-dimensional space C| 2⊗ C| 3 has an eigenvector basis with the
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eigenvalues read from the diagonal Pauli matrices given in the following table:

Y 12 ⊗ 13 τ 3 ⊗ 13 12 ⊗ √
3λ8 12 ⊗ λ3

e1 ⊗ e1 Y +1 +1 +1

e1 ⊗ e2 Y +1 +1 −1

e1 ⊗ e3 Y +1 −2 0

e2 ⊗ e1 Y −1 +1 +1

e2 ⊗ e2 Y −1 +1 −1

e2 ⊗ e3 Y −1 −2 0

The normalizationY ∈ IR will be discussed hereafter.
Without a complete Cartan torus there do not exist eigenvector bases for the

correlated groupU(2× 3) in faithful representations.
The subset of thoseU(2× 3)-representations which are trivial either for color

or for isospin, that is, the representations of hyperisospinU(2) or hypercolorU(3),
allow eigenvector bases forU(2) andU(3), respectively. They are obtained from
the corresponding fundamental representations given by the antisymmetric cube
or the antisymmetric square of the definingU(2× 3)-representation which triples
and doubles the hypercharge normalization. Those product representations have
the eigenvector bases

3∧
u ∈ U(2) on 2 with 3Y = 1

3Y 12 w2 P(2)+ P(2)−

e1 3Y +1 1 0

e2 3Y −1 0 1

w2 = τ 3; P(2)± = 12±w2
2

2∧
u ∈ U(3) on 3 with 2Y = 1

2Y 13 w3 λ3 P(3)+ P(3)−

e1 2Y +1 +1 1 0

e2 2Y +1 −1 1 0

e3 2Y −2 0 0 1

w3 = √
3λ8; P(3)+ = 213+w3

3 ;P(3)− = 13−w3
3

C|

C|

To obtain the projectors, the normalizationY has to fullfill 3|Y| = 1 for U(2) and
2|Y| = 1 for U(3).

It is impossible to give an eigenvector basis for the internal groupU(2× 3)
in faithful representations, for example, for the left-handed isodoublet color triplet
quark representation [1

6||1; 1, 0]. It is possible to give eigenvector bases for the
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reduced internal groupsU(2) or U(3), for example, for the representations with
the left-handed isodoublet color singlet lepton or the right-handed isosinglet color
triplet quarks, respectively. A quark confinement can be interpreted as the de-
cision with respect to a particle classification for the complete Cartan torus
U(1)+ × U(1)− ⊂ U(2) for hyperisospin and against the complete Cartan torus
U(1)+ × U(1)− × U(1)3 ⊂ U(3) for hypercolor.

With the reduction fromU(2× 3) to hyperisospinU(2), the projector basis
12±τ 3

2 generates the electromagnetic subgroupU(1) as one factor in the Cartan
torus, sayU(1)+. With the choice of a projector basis to characterize eigenstates,
no reduction from the interaction hyperisospin symmetryU(2) to the particle elec-
tromagnetic symmetryU(1)+ is enforced.

5. THE EXTERNAL–INTERNAL SYMMETRY CORRELATION

Also the external Lorentz group and the internal hyperisospin-color group for
the interaction symmetry transformations are centrally correlated.

5.1. Correlations by Defining Representations

Correlations are implementable by specific representations, especially by
defining representations.

A rankr semisimple Lie algebra, for example, logSU(n) with r = n− 1, has
r -fundamental representations, for example, quark and antiquark representations
[1, 0] and [0, 1] for logSU(3), which are a basis—with respect to totally symmet-

ric tensor products—for all representations, for example, [2C1, 2C2] ⊆ 2C1∨ [1, 0]⊗
2C2∨ [0, 1]. A layer deeper are the defining representations which are a subset of the
fundamental representations and allow, also using totally antisymmetric products,
to construct all fundamental representations, for example, antitriplet from triplets
[0, 1] ∼= [1, 0]∧ [1, 0]. If such a defining representation comes with a central cor-
relation of the represented groups, all its products will inherit this correlation.

The complex defining representation ofSU(n) on C| n comes with a represen-
tation of the scalar phaseU(1n)

U(n) 3 eiα0Y1n+i Eα Eσ (n) = [Y‖ 1, 0. . . , 0]︸ ︷︷ ︸
n−1 places

e.g.,U(2) 3 eiα0Y12+i Eα Eσ = [Y‖1]

U(3) 3 eiα0Y12+i EαEλ = [Y‖1, 0]

The correlation from theU(n) ∼= U(1)×SU(n)
I (n) representation is inherited by all prod-

ucts, for example, for the antisymmetric ones withn-ality k modn
k∧

[Y‖1, 0,. . . , 0] = [kY‖ 0, . . . , 0, 1, 0,. . . , 0]︸ ︷︷ ︸
kth place

, k = 1, . . . , n− 1

n∧
[Y‖1, 0,. . . , 0] = [nY‖0, . . . , 0, 0], nY ∈ ZZ
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TheU(1)-representation for powern has to come with an integer winding num-
ber, minimal for |nY| = 1. For the examples above one obtains with minimal
hyperchargeY

U(2):

 [Y‖1] ∧ [Y‖1] = [2Y‖0] ∈ U(1), |Y| = 1

2
2T∨

[Y‖1] = [2T Y|2T |, 2T = 0, 1,. . .

U(3):

 [Y‖1, 0]∧ [Y‖1, 0]= [2Y‖0, 1]
3∧

[Y‖1, 0]= [3Y‖0, 0] ∈ U(1), |Y| = 1

3

In this way, if all interaction parametrizing fields of the standard model arise
as representation products of one defining complex six-dimensional representation
on C| 2⊗ C| 3, they display the central II(6)-correlation as given inU(1)×SU(2)×SU(3)

I (6) ,
for example, for the fermion fields

u =
[

1

6

∥∥∥∥1; 1, 0

]
⇒



quark isodoubletq with u =
[

1

6

∥∥∥∥1; 1, 0

]
down antiquark isosingletd∗ with

2∧
u =

[
1

3

∥∥∥∥0; 0, 1

]
antilepton isodoublet1∗ with

3∧
u =

[
1

2

∥∥∥∥1; 0, 0

]
up quark isosingletu with

4∧
u =

[
2

3

∥∥∥∥0; 1, 0

]
lepton isosinglete∗ with

6∧
u = [1|0; 0, 0]

Similarily, the defining quartet (2s and 2p states) representation [1
2; 1

2] on
C| 2⊗ C| 2 for the bound states of the hydrogen atom gives rise to all bound state
representations [J; J] arising as direct summands in one of the totally symmetric

products
N∨

[ 1
2; 1

2] acting on C| 2(3+N
3 )

N∨[
1

2
;

1

2

]
=


⊕

J=0,1,···, N
2

[ J; J], N even⇒ 2J + 1 odd

⊕
J= 1

2 , 3
2 ,···, N

2

[ J; J], N odd ⇒ 2J + 1 even

All these representations inherit the II(2)-correlation inSU(2)×SU(2)
I (2) , nontrivial for

even multiplicities (2J + 1)2 = 4, 16,. . . .
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5.2. The Spin–Isospin Correlation

If the hadrons arise from quark field products they inherit the II(2)-correlation
from LorentzSL(C| 2) and isospinSU(2) in the fundamental representation on
C| 2⊗ C| 2, as seen in the left-handed Weyl doublet isodoublet color triplet quark
representation on C| 2⊗ C| 2⊗ C| 3, faithful for the centrally correlated group

SL(C| 2)× U(1)× SU(2)× SU(3)

I (2)× I (2)× I (3)

and arising also in the left-handed Weyl doublet isodoublet color singlet lepton
representation on C| 2⊗ C| 2, faithful for

SL(C| 2)× U(1)× SU(2)

I (2)× I (2)

One factor II(2) correlates spin inSL(C| 2) with isospinSU(2), the other factor II(2)
isospinSU(2) with hyperchargeU(1).

A three-dimensional Cartan subalgebra for a maximal compact seven-
dimensional Lie subalgebra for spin, hypercharge, and isospin

IR7 ∼= log[SU(2)× U(1)× SU(2)] ⊂ log[SL(C| 2)× U(1)× SU(2)] ∼= IR10

in a fundamental complex four-dimensional representation is given by{
iω3σ

3⊗ 12+ iα012⊗ 12+ 12⊗ iα3τ
3
} ∼= IR3

The exponent involves four parameters

U(1)σ 3 ◦ U(12) ◦ U(1)τ 3 = U(1)σ 3 ◦ [U(1)+ × U(1)−]

parameters:{±ω3+ α0± α3} = {±ω3+ α+,±ω3+ α−}
which prevent a complete three-dimensional Cartan torus forSU(2)×U(1)×SU(2)

I (2)× I (2) .
There exist complete two-dimensional Cartan toriU(1) × U(1) for the centrally
correlated two factor subgroups

SU(2)× U(1)

I (2)
∼= U(2),

SU(2)× SU(2)

I (2)
∼= SO(4)

Therefore, one has to decide with respect to eigenvector bases once more
for a subgroup with a two-dimensional Cartan torus—the choice in the observed
particles isU(2) with the scalar phase factor the electromagneticU(1)+ ⊂ U(2)
from hyperisospin

U(2)∼= SU(2)× U(1)+
I (2)

⊃ U(1)σ 3 ◦ U(1)+, parameters:{±ω3+ α+}

Cartan torus:ei (ω3+α+) 12+σ3

2 ⊗ 12+τ3

2 ei (−ω3+α+) 12−σ3

2 ⊗ 12+τ3

2 ∈ U(1)++ × U(1)−+
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The other hyperisospin circleU(1)− does not arise with eigenvectors. In the stan-
dard model theU(1)− symmetry is spontaneously broken via a degenerated ground
state, implemented by the Higgs field8 in a definingU(2)-representation

〈8⊗8∗〉 =
(

0

M

)
⊗ (0, M) =

(
0 0

0 M2

)
= 12− τ 3

2
M2

The groupU(2) induces nontrivial isospin multiplicities in the representation space
(particles as translation eigenvectors) in contrast to the confined color.

6. SUMMARY

The construction of eigenstates for the large homogeneous interaction sym-
metry group can be done in three steps (↓), the first two ones characterized by the
choice of a maximal, but not complete Cartan torus

Group Defining field Representation

ψα,i

Interaction operations SL( 2) × U(1) × SU(2) × SU(3)
I(2) × I(6)

α = 1, 2 With 1
6 ‖1; 1,

i = 1, 2, 3

Confinement of color SU(3) ↓

(
3∧

ψ)α
SL( 2) × U(1) × SU(2)

I (2) × I (2)
With ‖

α = 1, 2

Reduction U(2) → U(1)+
to charge ↓

p+ = 8α(
3∧

ψ)αSL( 2) × U(1)+
I(2)

With [1], [0]

n0 = 8∗
βεβα(

3∧
ψ)α

Rest or momentum system ↓

m2 > 0:

{
SU(2) × U(1)+

I(2)∼= U(2)
Particles

m = 0:

{
U(1)3 × U(1)+

I(2)∼= U(1) × U(1)

[

[

 ]
0

 ]
1

C

C 1
2

C
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In the third and fourth column only the internal representation properties are
given.
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